Extensions 1→N→G→Q→1 with N=C42 and Q=D5

Direct product G=N×Q with N=C42 and Q=D5
dρLabelID
D5×C4280D5xC4^2160,92

Semidirect products G=N:Q with N=C42 and Q=D5
extensionφ:Q→Aut NdρLabelID
C421D5 = C42⋊D5φ: D5/C5C2 ⊆ Aut C4280C4^2:1D5160,93
C422D5 = C422D5φ: D5/C5C2 ⊆ Aut C4280C4^2:2D5160,97
C423D5 = D204C4φ: D5/C5C2 ⊆ Aut C42402C4^2:3D5160,12
C424D5 = C4×D20φ: D5/C5C2 ⊆ Aut C4280C4^2:4D5160,94
C425D5 = C204D4φ: D5/C5C2 ⊆ Aut C4280C4^2:5D5160,95
C426D5 = C4.D20φ: D5/C5C2 ⊆ Aut C4280C4^2:6D5160,96

Non-split extensions G=N.Q with N=C42 and Q=D5
extensionφ:Q→Aut NdρLabelID
C42.1D5 = C42.D5φ: D5/C5C2 ⊆ Aut C42160C4^2.1D5160,10
C42.2D5 = C203C8φ: D5/C5C2 ⊆ Aut C42160C4^2.2D5160,11
C42.3D5 = C4×Dic10φ: D5/C5C2 ⊆ Aut C42160C4^2.3D5160,89
C42.4D5 = C202Q8φ: D5/C5C2 ⊆ Aut C42160C4^2.4D5160,90
C42.5D5 = C20.6Q8φ: D5/C5C2 ⊆ Aut C42160C4^2.5D5160,91
C42.6D5 = C4×C52C8central extension (φ=1)160C4^2.6D5160,9

׿
×
𝔽